#NEXUS [NEXUS FILE GENERATED BY WINCLADA (Copyright 2002 K.C. Nixon); THIS DOES NOT CONSTITUTE ENDORSEMENT OF THIS FORMAT, NOR GUARANTEE ACCURACY] BEGIN DATA; DIMENSIONS NTAX=25 NCHAR=41; FORMAT MISSING=? SYMBOLS= " 0 1 2 3 4 5 6 7 8 9"; OPTIONS MSTAXA=POLYMORPH ; CHARLABELS [1] DURATION [2] MUCILAGINOUS_RINGS_ON_STEMS [3] LEAF_ARRANGEMENT_ [4] LEAF_CONSISTENCY [5] LEAF_MARGIN [6] LEAF_APEX_ANGLE [7] PUSTULES_ON_LEAVES [8] INFLORESCENCE_RAMIFICATION [9] RAMIFICATION_PATTERN [10] MINIMUM_FLOWERING_UNIT_ARRANGEMENT [11] PEDICEL_SUBTENDING_THE_FLOWERS [12] NUMBER_OF_BRACTS_SUBTENDING_A_SINGLE_FLOWER [13] FLORAL_BRACT_TEXTURE [14] FLORAL_BRACT_SHAPE [15] PUSTULES_ON_FLORAL_BRACTS [16] BRACTS_PERSISTENCE_IN_MATURE_FRUITS [17] PERIANTH_LIMB_COLOR [18] PERIANTH_SHAPE [19] 'CHASMOGAMOUS_FLOWER_LENGTH_(mm)' [20] PERIANTH_INDUMENTUM [21] PERIANTH_PUBESCENCE [22] STIGMA_SURFACE [23] 'ANTHER_WIDTH_(mm)' [24] 'EXERTED_PORTION_OF_THE_FILAMENTS_(mm)' [25] FRUIT_SHAPE [26] 'FRUIT_LENGTH_(mm)' [27] 'FRUIT_WIDTH_(mm)' [28] FRUIT_SYMMETRY_IN_THE_TRANSVERSE_PLANE [29] FRUIT_SYMMETRY_IN_THE_LONGITUDINAL_PLANE [30] FRUIT_RIB_NUMBER [31] RIBS_PROFILE_IN_POLAR_VIEW [32] EQUATORIAL_CREST_ON_THE_FRUIT [33] HYALINE_GLANDS_ON_FRUITS [34] VERRUCOSE_GLANDS__ON_FRUITS [35] MUCILAGE_ON_WET_FRUITS [36] TUBERCLES_ON_WET_FRUIT [37] RAPHIDES_ON_FRUIT [38] STALK_IN_FRUIT [39] FRUIT_ORIENTATION_WITH_PESPECT_TO_THE_STALK [40] RAPHIDES_IN_COTYLEDONS [41] 'CHROMOSOMAL_NUMBER_(n)' ; STATELABELS 1 annual perennial, 2 absent present, 3 evenly_distributed_along_the_stem concentrated_on_the_lower_half, 4 herbaceous succulent 'leathery-succulent', 5 entire sinuate_to_undulate crenulate, 6 acute obtuse, 7 absent present, 8 absent present, 9 monopodial sympodial, 10 umbelliform racemiform monochasium, 11 absent present, 12 1 2 3 4 5, 13 herbaceous chartaceous scarious, 14 lanceolate ovate widely_ovate, 15 absent present, 16 deciduous persistent_not_accrescent persistent_accrescent, 17 white_to_pink violet_to_magenta 'reddish-orange' 'yellow-green', 18 campanulate 'funnel-shaped', 19 '0.1-6.2' '6.2-12.5' '12.5-20.0' '20.0-26.8' '26.8-31.8' '31.8-38.0', 20 absent present, 21 puberulent villous, 22 smooth papillate, 23 '0.2-1.1' '1.3-2.3', 24 '0.2-9.5' '12.0-40.0_', 25 turbinate biturbinate fusiform obovoid_to_obpyramidal claviform ellipsoid, 26 '2.3-4.4' '4.4-7.0' '7.0-9.6', 27 '0.4-2.0' '2.0-3.4' '3.4-4.9' '4.9-7.4', 28 bilateral asymmetric, 29 symmetric asymmetric, 30 '4-5' 10, 31 triangular 'round-obtuse' linear, 32 absent present, 33 absent present, 34 absent present, 35 absent present, 36 absent present, 37 absent present, 38 absent present, 39 straight inclined, 40 absent present, 41 12 13 20 22 24 26 27 58, ; MATRIX M.glabrifolia 101(01)0001120412021011010030010010101110-0? N.capitata 1001(12)0(01)0-00-0(012)12213110(01)(01)01(13)1011000101100? O.hypogaea 000(01)(01)(01)(01)0--0221(01)01131(01)00052300--000000110? B.alata 000110(01)1100(01)2(01)100000-0003001000000100100? B.anisophylla 10(01)2101112(01)(12)2201101100003001001000100100? B.coccinea 10000001100(01)2(02)0010010000(34)001001010101100(05) B.diffusa 1010(01)(01)0110002200100100003001001010101100(1567) B.erecta 0(01)0000(01)1100(012)20100000-00030010000001011005 B.gracillima 10101001120220101001000040010010101011(01)0? B.spicata 0(01)0010(01)1110020100000-00030010010001011005 B.xantii 0(01)011011110(01)2(01)100000-(01)003001000000101100? Co.arabicus 10001001101(123)0000011100004101011011(01)011112 Co.brandegeei 10001001101000000111000041010110(01)1001111? Co.plumbagineus 10001001101(12)00000111000042010110110011112 Co.scandens 10001001101(12)00003100-0004201011001001111? Cy.crassifolia 11011(01)00-1102000111101004201111000111110(13) Cy.gypsophiloides 11010000-11020001110-10042011110001111103 A.annulatus 11(01)22(01)11000(12)2(02)110111100020100120000000-04 A.eriosolenus (01)1122111020(34)2211011110000011012000(01)101004 A.hintoniorum 11122(01)11120322111121000021100120000100-0? A.leiosolenus_var._gypsogenus 11122111020022110150-0111130011100100100? A.leiosolenus_var._howardii 11122111020022111140-0111120011100100100? A.leiosolenus_var._lasianthus 1112211102002211014100111120011100100100? A.leiosolenus_var._leiosolenus 11122111020021110150-01111200111001001004 A.reflexus 11122111020022110120-01(01)1120011100100100? ; ENDBLOCK; BEGIN ASSUMPTIONS; OPTIONS DEFTYPE=unord PolyTcount=MINSTEPS ; TYPESET * UNTITLED = unord: 1-3 5-11 15 17-18 20-25 28-41, ord: 4 12-14 16 19 26-27; ENDBLOCK; BEGIN TREES; TRANSLATE 1 M.glabrifolia, 2 N.capitata, 3 O.hypogaea, 4 B.alata, 5 B.anisophylla, 6 B.coccinea, 7 B.diffusa, 8 B.erecta, 9 B.gracillima, 10 B.spicata, 11 B.xantii, 12 Co.arabicus, 13 Co.brandegeei, 14 Co.plumbagineus, 15 Co.scandens, 16 Cy.crassifolia, 17 Cy.gypsophiloides, 18 A.annulatus, 19 A.eriosolenus, 20 A.hintoniorum, 21 A.leiosolenus_var._gypsogenus, 22 A.leiosolenus_var._howardii, 23 A.leiosolenus_var._lasianthus, 24 A.leiosolenus_var._leiosolenus, 25 A.reflexus ; [NOTE: THE COMMAS IN THE NEXUS TREE FORMAT ARE UNNECESSARY AND CONFUSING] TREE t1 =(1,((5,(((25,(22,23,(21,24))),(20,(18,19))),(2,3))),(9,(7,(6,(((16,17),(13,(15,(12,14)))),(10,(8,(4,11))))))))); TREE t2 =(1,((5,(((25,(22,23,(21,24))),(20,(18,19))),(2,3))),(9,(7,(6,(((16,17),(15,(14,(12,13)))),(10,(8,(4,11))))))))); TREE t3 =(1,((9,(7,(6,((16,17),(13,(12,(14,15)))),(10,(8,(4,11)))))),(5,(((25,(22,23,(21,24))),(20,(18,19))),(2,3))))); TREE t4 =(1,((5,((20,((25,(22,23,(21,24))),(18,19))),(2,3))),(9,(7,(6,(((16,17),(13,(15,(12,14)))),(10,(8,(4,11))))))))); TREE t5 =(1,((5,((19,(18,(20,(25,(22,23,(21,24)))))),(2,3))),(9,(7,(6,(((16,17),(13,(15,(12,14)))),(10,(8,(4,11))))))))); TREE t6 =(1,((5,((20,((25,(22,23,(21,24))),(18,19))),(2,3))),(9,(7,(6,(((16,17),(15,(14,(12,13)))),(10,(8,(4,11))))))))); TREE t7 =(1,((5,((19,(18,(20,(25,(22,23,(21,24)))))),(2,3))),(9,(7,(6,(((16,17),(15,(14,(12,13)))),(10,(8,(4,11))))))))); TREE t8 =(1,((9,(7,(6,((16,17),(13,(12,(14,15)))),(10,(8,(4,11)))))),(5,((20,((25,(22,23,(21,24))),(18,19))),(2,3))))); TREE t9 =(1,((9,(7,(6,((16,17),(13,(12,(14,15)))),(10,(8,(4,11)))))),(5,((19,(18,(20,(25,(22,23,(21,24)))))),(2,3))))); TREE t10 =(1,((5,((18,19,20,(25,(22,23,(21,24)))),(2,3))),(9,(7,(6,((16,17),(12,13,14,15)),(10,(8,(4,11)))))))); ENDBLOCK;