NEXUS [File created by TreeBASE: 7/26/07 21:06:37] [Analysis accession#: S1192A3754] BEGIN TREES; TITLE S1192A3754; TRANSLATE 1 Polytrichadelphus_pseudopolytrichum, 2 Polytrichadelphus_magellanicus, 3 Dendroligotrichum_dendroides, 4 Dendroligotrichum_squamosum, 5 Oligotrichum_austroaligerum, 6 Polytrichastrum_longisetum, 7 Steereobryon_subulirostrum, 8 Polytrichum_brachymitrium, 9 Notoligotrichum_australe, 10 Polytrichastrum_formosum, 11 Oedipodium_griffithianum, 12 Dawsonia_polytrichoides, 13 Pogonatum_pensilvanicum, 14 Oligotrichum_hercynicum, 15 Oligotrichum_parallelum, 16 Pogonatum_campylocarpum, 17 Polytrichastrum_alpinum, 18 Polytrichum_juniperinum, 19 Bartramiopsis_lescurii, 20 Atrichum_oerstaedianum, 21 Eopolytrichum_antiquum, 22 Polytrichum_subpilosum, 23 Atrichopsis_compressa, 24 Pogonatum_microstomum, 25 Polytrichum_piliferum, 26 Psilopilum_laevigatum, 27 Tetraphis_geniculata, 28 Pogonatum_nipponicum, 29 Pogonatum_spinulosum, 30 Funaria_hygrometrica, 31 Atrichum_androgynum, 32 Atrichum_angustatum, 33 Meiotrichum_lyallii, 34 Pogonatum_contortum, 35 Pogonatum_japonicum, 36 Pogonatum_subulatum, 37 Pogonatum_urnigerum, 38 Polytrichum_commune, 39 Tetraphis_pellucida, 40 Diphyscium_foliosum, 41 Poogonatum_aloides, 42 Pogonatum_cirratum, 43 Atrichum_undulatum, 44 Pogonatum_dentatum, 45 Andreaea_rupestris, 46 Alophozia_azorica, 47 Buxbaumia_aphylla, 48 Sphagnum_palustre, 49 Buxbaumia_piperi, 50 Dawsonia_superba, 51 Dawsonia_papuana, 52 Pogonatum_neesii, 53 Hebantia_rigida, 54 Timmia_sibirica, 55 Itatiella_ulei, 56 Lyellia_aspera, ; TREE Tree3388 = [&R] (48,(45,((((30,54),40),((47,49),(27,39))),(11,((46,23),((((((((((((31,43),20),32),7),(14,15)),(((((21,((8,22),38),(18,25)),(10,6)),(((((41,(16,13)),29),42),34),((44,(52,36)),(35,28)))),(24,(37,17))),26)),33),((55,5),9)),((3,4),53)),(2,1)),((50,51),12)),(19,56))))))); TREE Tree3389 = [&R] (48,(45,((((30,54),40),((47,49),(27,39))),(11,((46,23),((((((((((((31,43),20),32),7),(14,15)),(((((21,((8,22),38),(18,25)),(10,6)),((((41,(16,13)),29),(42,34)),((44,(52,36)),(35,28)))),(24,(37,17))),26)),33),((55,5),9)),((3,4),53)),(2,1)),((50,51),12)),(19,56))))))); END;