NEXUS [File created by TreeBASE: 7/26/07 21:11:25] [Analysis accession#: S1448A5203] BEGIN TREES; TITLE S1448A5203; TRANSLATE 1 Callitris_preisii_var._verrucosa, 2 Calocedrus_macrolepis_var._formo, 3 Juniperus_coahuilensis_var._ariz, 4 Callitropsis_nootkatensis, 5 Callitropsis_vietnamensis, 6 Chamaecyparis_formosensis, 7 Chamaecyparis_taiwanensis, 8 Chamaecyparis_lawsoniana, 9 Cupressus_austrotibetica, 10 Cupressus_guadalupensis, 11 Widdringtonia_nodiflora, 12 Chamaecyparis_thyoides, 13 Cupressus_stephensonii, 14 Juniperus_occidentalis, 15 Chamaecyparis_pisifera, 16 Tetraclinis_articulata, 17 Platycladus_orientalis, 18 Cupressus_sempervirens, 19 Callitris_endlicherii, 20 Cupressus_cashmeriana, 21 Cupressus_duclouxiana, 22 Cupressus_tonkinensis, 23 Juniperus_californica, 24 Juniperus_osteosperma, 25 Cupressus_abramsiana, 26 Cupressus_dupreziana, 27 Cupressus_jiangensis, 28 Cupressus_lusitanica, 29 Cupressus_macnabiana, 30 Cupressus_nevadensis, 31 Cupressus_macrocarpa, 32 Microbiota_decussata, 33 Chamaecyparis_obtusa, 34 Calocedrus_decurrens, 35 Cupressus_arizonica, 36 Cupressus_atlantica, 37 Cupressus_benthamii, 38 Cupressus_chengiana, 39 Cupressus_goveniana, 40 Cupressus_sargentii, 41 Thujopsis_dolabrata, 42 Cupressus_forbesii, 43 Cupressus_funebris, 44 Cupressus_gigantea, 45 Cupressus_torulosa, 46 Fokienia_hodginsii, 47 Juniperus_communis, 48 Juniperus_deppeana, 49 Juniperus_drupacea, 50 Thuja_occidentalis, 51 Juniperus_conferta, 52 Cupressus_bakerii, 53 Cupressus_montana, 54 Cupressus_pigmaea, 55 Juniperus_procera, 56 Cupressus_glabra, 57 Juniperus_indica, 58 Thuja_standishii, 59 Thuja_plicata, ; TREE Tree4144 = [&R] (1,(19,(11,((((((4,5),(52,((39,(25,54)),(31,(40,(30,(29,((35,(56,(42,(10,13)))),(28,(37,53)))))))))),((((18,(36,26)),(21,(44,(9,(20,45))))),(22,(43,(38,27)))),((55,(57,((23,24),(14,(3,48))))),(49,(47,51))))),((34,2),(16,(32,17)))),((46,(6,15)),(12,(8,(33,7))))),(41,(58,(50,59))))))); TREE Tree4145 = [&R] (1,(19,(11,((((((4,5),(52,(31,((25,(39,54)),(40,(30,(29,((35,(56,(42,(10,13)))),(28,(37,53)))))))))),((((18,(36,26)),(21,(44,(9,(20,45))))),(22,(43,(38,27)))),((55,(57,((23,24),(14,(3,48))))),(49,(47,51))))),((34,2),(16,(32,17)))),((46,(6,15)),(12,(8,(33,7))))),(41,(58,(50,59))))))); TREE Tree4146 = [&R] (1,(19,(11,((((((4,5),(52,(31,((25,(39,54)),(40,(30,(29,((35,(56,(42,(10,13)))),(28,(37,53)))))))))),((((18,(36,26)),(21,(44,(9,(20,45))))),(22,(43,(38,27)))),((55,(57,((23,24),(3,(48,14))))),(49,(47,51))))),((34,2),(16,(32,17)))),((46,(6,15)),(12,(8,(33,7))))),(41,(58,(50,59))))))); TREE Tree4147 = [&R] (1,(19,(11,((((((4,5),(52,(31,((54,(25,39)),(40,(30,(29,((35,(56,(42,(10,13)))),(28,(37,53)))))))))),((((18,(36,26)),(21,(44,(9,(20,45))))),(22,(43,(38,27)))),((55,(57,((23,24),(48,(3,14))))),(49,(47,51))))),((34,2),(16,(32,17)))),((46,(6,15)),(12,(8,(33,7))))),(41,(58,(50,59))))))); TREE Tree4148 = [&R] (1,(19,(11,((((((4,5),(52,((54,(25,39)),(31,(40,(30,(29,((35,(56,(42,(10,13)))),(28,(37,53)))))))))),((((18,(36,26)),(21,(44,(9,(20,45))))),(22,(43,(38,27)))),((55,(57,((23,24),(48,(3,14))))),(49,(47,51))))),((34,2),(16,(32,17)))),((46,(6,15)),(12,(8,(33,7))))),(41,(58,(50,59))))))); TREE Tree4149 = [&R] (1,(19,(11,((((((4,5),(52,((54,(25,39)),(31,(40,(30,(29,((35,(56,(42,(10,13)))),(28,(37,53)))))))))),((((18,(36,26)),(21,(44,(9,(20,45))))),(22,(43,(38,27)))),((55,(57,((23,24),(3,(48,14))))),(49,(47,51))))),((34,2),(16,(32,17)))),((46,(6,15)),(12,(8,(33,7))))),(41,(58,(50,59))))))); TREE Tree4150 = [&R] (1,(19,(11,(((((5,(4,(52,((39,(25,54)),(31,(40,(30,(29,((35,(56,(42,(10,13)))),(28,(37,53))))))))))),((((18,(36,26)),(21,(44,(9,(20,45))))),(22,(43,(38,27)))),((55,(57,((23,24),(3,(48,14))))),(49,(47,51))))),((34,2),(16,(32,17)))),((46,(6,15)),(12,(8,(33,7))))),(41,(58,(50,59))))))); TREE Tree4151 = [&R] (1,(19,(11,(((((5,(4,(52,((39,(25,54)),(31,(40,(30,(29,((35,(56,(42,(10,13)))),(28,(37,53))))))))))),((((18,(36,26)),(21,(44,(9,(20,45))))),(22,(43,(38,27)))),((55,(57,((23,24),(14,(3,48))))),(49,(47,51))))),((34,2),(16,(32,17)))),((46,(6,15)),(12,(8,(33,7))))),(41,(58,(50,59))))))); TREE Tree4152 = [&R] (1,(19,(11,(((((5,(4,(52,(31,((39,(25,54)),(40,(30,(29,((35,(56,(42,(10,13)))),(28,(37,53))))))))))),((((18,(36,26)),(21,(44,(9,(20,45))))),(22,(43,(38,27)))),((55,(57,((23,24),(14,(3,48))))),(49,(47,51))))),((34,2),(16,(32,17)))),((46,(6,15)),(12,(8,(33,7))))),(41,(58,(50,59))))))); TREE Tree4153 = [&R] (1,(19,(11,(((((5,(4,(52,((54,(25,39)),(31,(40,(30,(29,((35,(56,(42,(10,13)))),(28,(37,53))))))))))),((((18,(36,26)),(21,(44,(9,(20,45))))),(22,(43,(38,27)))),((55,(57,((23,24),(48,(3,14))))),(49,(47,51))))),((34,2),(16,(32,17)))),((46,(6,15)),(12,(8,(33,7))))),(41,(58,(50,59))))))); TREE Tree4154 = [&R] (1,(19,(11,(((((5,(4,(52,(31,((54,(25,39)),(40,(30,(29,((35,(56,(42,(10,13)))),(28,(37,53))))))))))),((((18,(36,26)),(21,(44,(9,(20,45))))),(22,(43,(38,27)))),((55,(57,((23,24),(48,(3,14))))),(49,(47,51))))),((34,2),(16,(32,17)))),((46,(6,15)),(12,(8,(33,7))))),(41,(58,(50,59))))))); TREE Tree4155 = [&R] (1,(19,(11,(((((5,(4,(52,(31,((54,(25,39)),(40,(30,(29,((35,(56,(42,(10,13)))),(28,(37,53))))))))))),((((18,(36,26)),(21,(44,(9,(20,45))))),(22,(43,(38,27)))),((55,(57,((23,24),(3,(48,14))))),(49,(47,51))))),((34,2),(16,(32,17)))),((46,(6,15)),(12,(8,(33,7))))),(41,(58,(50,59))))))); END;