#NEXUS Begin trees; [Treefile saved 1908��5��28�� 12:53 AM] [! >Data file = for_treebase.nex >Heuristic search settings: > Optimality criterion = parsimony > Character-status summary: > Of 1712 total characters: > All characters are of type 'unord' > All characters have equal weight > 1676 characters are constant > 27 variable characters are parsimony-uninformative > Number of parsimony-informative characters = 9 > Starting tree(s) obtained via stepwise addition > Addition sequence: as-is > Number of trees held at each step during stepwise addition = 1 > Branch-swapping algorithm: tree-bisection-reconnection (TBR) > Steepest descent option not in effect > Initial 'MaxTrees' setting = 100 (will be auto-increased by 100) > Branches collapsed (creating polytomies) if maximum branch length is zero > 'MulTrees' option in effect > Topological constraints not enforced > Trees are unrooted > >Heuristic search completed > Total number of rearrangements tried = 32964 > Score of best tree(s) found = 39 > Number of trees retained = 56 > Time used = 0.17 sec ] Translate 1 Rosa_soulieana_H1, 2 Rosa_soulieana_H2, 3 Rosa_soulieana_H3, 4 Rosa_soulieana_H4, 5 Rosa_soulieana_H5, 6 Rosa_soulieana_H6, 7 Rosa_soulieana_H7, 8 Rosa_soulieana_H8, 9 Rosa_soulieana_H9, 10 Rosa_banksiae, 11 Rosa_deseglisei, 12 Rosa_sertata ; tree PAUP_1 = [&R] (((((((1,3),2,4,5),9),7),6,8),(10,12)),11); tree PAUP_2 = [&R] ((((((((1,3),2,4,5),9),7),6),8),(10,12)),11); tree PAUP_3 = [&R] (((((((((1,3),4),2,5),9),7),6),8),(10,12)),11); tree PAUP_4 = [&R] ((((((((1,3),2,4,5),7),9),6),8),(10,12)),11); tree PAUP_5 = [&R] ((((((((1,3),2,4,5),9),7),8),6),(10,12)),11); tree PAUP_6 = [&R] (((((((1,3),2,4,5),7,9),6),8),(10,12)),11); tree PAUP_7 = [&R] ((((((((1,(3,4)),2,5),9),7),6),8),(10,12)),11); tree PAUP_8 = [&R] ((((((((1,3),2,4,5),7),9),8),6),(10,12)),11); tree PAUP_9 = [&R] (((((((1,3),2,4,5),7,9),8),6),(10,12)),11); tree PAUP_10 = [&R] (((((((1,3),2,4,5),7),9),6,8),(10,12)),11); tree PAUP_11 = [&R] ((((((1,3),2,4,5),7,9),6,8),(10,12)),11); tree PAUP_12 = [&R] (((((((1,3),2,4,5),(6,9)),7),8),(10,12)),11); tree PAUP_13 = [&R] (((((((1,3),2,4,5),7),(6,9)),8),(10,12)),11); tree PAUP_14 = [&R] (((((((1,2,(3,4),5),9),7),6),8),(10,12)),11); tree PAUP_15 = [&R] (((((((((1,3),4),2,5),7),9),6),8),(10,12)),11); tree PAUP_16 = [&R] ((((((((1,3),4),2,5),7,9),6),8),(10,12)),11); tree PAUP_17 = [&R] ((((((((1,3),4),2,5),7),(6,9)),8),(10,12)),11); tree PAUP_18 = [&R] ((((((((1,3),4),2,5),7),9),6,8),(10,12)),11); tree PAUP_19 = [&R] (((((((1,3),4),2,5),7,9),6,8),(10,12)),11); tree PAUP_20 = [&R] (((((((((1,3),4),2,5),7),9),8),6),(10,12)),11); tree PAUP_21 = [&R] ((((((((1,3),4),2,5),7,9),8),6),(10,12)),11); tree PAUP_22 = [&R] ((((((((1,3),4),2,5),(6,9)),7),8),(10,12)),11); tree PAUP_23 = [&R] (((((((((1,3),4),2,5),9),7),8),6),(10,12)),11); tree PAUP_24 = [&R] ((((((((1,3),4),2,5),9),7),6,8),(10,12)),11); tree PAUP_25 = [&R] (((((((1,3),4),2,5),7),(6,9),8),(10,12)),11); tree PAUP_26 = [&R] ((((((((1,3),4),2,5),7),8),(6,9)),(10,12)),11); tree PAUP_27 = [&R] (((((((1,3),4),2,5),(6,9),7),8),(10,12)),11); tree PAUP_28 = [&R] ((((((((1,(3,4)),2,5),7),9),6),8),(10,12)),11); tree PAUP_29 = [&R] (((((((1,2,(3,4),5),7),9),6),8),(10,12)),11); tree PAUP_30 = [&R] ((((((((1,(3,4)),2,5),9),7),8),6),(10,12)),11); tree PAUP_31 = [&R] (((((((1,2,(3,4),5),9),7),8),6),(10,12)),11); tree PAUP_32 = [&R] ((((((1,3),2,4,5),(6,9),7),8),(10,12)),11); tree PAUP_33 = [&R] (((((((1,(3,4)),2,5),7,9),6),8),(10,12)),11); tree PAUP_34 = [&R] ((((((1,2,(3,4),5),7,9),6),8),(10,12)),11); tree PAUP_35 = [&R] (((((((1,(3,4)),2,5),7),(6,9)),8),(10,12)),11); tree PAUP_36 = [&R] (((((((1,(3,4)),2,5),7),9),6,8),(10,12)),11); tree PAUP_37 = [&R] ((((((1,(3,4)),2,5),7,9),6,8),(10,12)),11); tree PAUP_38 = [&R] ((((((((1,(3,4)),2,5),7),9),8),6),(10,12)),11); tree PAUP_39 = [&R] (((((((1,(3,4)),2,5),7,9),8),6),(10,12)),11); tree PAUP_40 = [&R] (((((((1,(3,4)),2,5),(6,9)),7),8),(10,12)),11); tree PAUP_41 = [&R] (((((((1,(3,4)),2,5),9),7),6,8),(10,12)),11); tree PAUP_42 = [&R] (((((((1,3),2,4,5),7),8),(6,9)),(10,12)),11); tree PAUP_43 = [&R] (((((((1,2,(3,4),5),7),9),8),6),(10,12)),11); tree PAUP_44 = [&R] ((((((1,3),2,4,5),7),(6,9),8),(10,12)),11); tree PAUP_45 = [&R] ((((((1,2,(3,4),5),7),9),6,8),(10,12)),11); tree PAUP_46 = [&R] ((((((1,2,(3,4),5),(6,9)),7),8),(10,12)),11); tree PAUP_47 = [&R] ((((((1,2,(3,4),5),7),(6,9)),8),(10,12)),11); tree PAUP_48 = [&R] (((((1,2,(3,4),5),7,9),6,8),(10,12)),11); tree PAUP_49 = [&R] ((((((1,2,(3,4),5),7,9),8),6),(10,12)),11); tree PAUP_50 = [&R] ((((((1,2,(3,4),5),9),7),6,8),(10,12)),11); tree PAUP_51 = [&R] (((((((1,(3,4)),2,5),7),8),(6,9)),(10,12)),11); tree PAUP_52 = [&R] ((((((1,2,(3,4),5),7),8),(6,9)),(10,12)),11); tree PAUP_53 = [&R] ((((((1,(3,4)),2,5),7),(6,9),8),(10,12)),11); tree PAUP_54 = [&R] ((((((1,(3,4)),2,5),(6,9),7),8),(10,12)),11); tree PAUP_55 = [&R] (((((1,2,(3,4),5),7),(6,9),8),(10,12)),11); tree PAUP_56 = [&R] (((((1,2,(3,4),5),(6,9),7),8),(10,12)),11); End;