CiteULike CiteULike
Delicious Delicious
Connotea Connotea

Citation for Study 21468

About Citation title: "Evolution of cytokinesis-related protein localization during the emergence of multicellularity in volvocine green algae.".
About Study name: "Evolution of cytokinesis-related protein localization during the emergence of multicellularity in volvocine green algae.".
About This study is part of submission 21468 (Status: Published).

Citation

Arakaki Y., Fujiwara T., Kawai-toyooka H., Kawafune K., Featherston J., Durand P.M., Miyagishima S., & Nozaki H. 2017. Evolution of cytokinesis-related protein localization during the emergence of multicellularity in volvocine green algae. BMC Evolutionary Biology, .

Authors

  • Arakaki Y.
  • Fujiwara T.
  • Kawai-toyooka H.
  • Kawafune K. Phone +81-3-5841-4046
  • Featherston J.
  • Durand P.M.
  • Miyagishima S.
  • Nozaki H.

Abstract

Background: The volvocine lineage, containing unicellular Chlamydomonas reinhardtii and differentiated multicellular Volvox carteri, is a powerful model for comparative studies aiming at understanding emergence of multicellularity. Tetrabaena socialis is the simplest multicellular volvocine alga and belongs to the family Tetrabaenaceae that is sister to more complex multicellular volvocine families, Goniaceae and Volvocaceae (Fig. 1). Thus, T. socialis is a key species to elucidate the initial steps in the evolution of multicellularity. In the asexual life cycle of C. reinhardtii and multicellular volvocine species, reproductive cells form daughter cells/colonies by multiple fission. In embryogenesis of the multicellular species, daughter protoplasts are connected to one another by cytoplasmic bridges formed by incomplete cytokinesis during multiple fission. These bridges are important for arranging the daughter protoplasts in appropriate positions such that species-specific integrated multicellular individuals are shaped. Detailed comparative studies of cytokinesis between unicellular and simple multicellular volvocine species will help to elucidate the emergence of multicellularity from the unicellular ancestor. However, the cytokinesis-related genes between closely related unicellular and multicellular species have not been subjected to a comparative analysis. Results: Here we focused on dynamin-related protein 1 (DRP1), which is known for its role in cytokinesis in land plants. Immunofluorescence microscopy using an antibody against T. socialis DRP1 revealed that volvocine DRP1 was localized to division planes during cytokinesis in unicellular C. reinhardtii and two simple multicellular volvocine species T. socialis and Gonium pectorale. DRP1 signals were mainly observed in the newly formed division planes of unicellular C. reinhardtii during multiple fission, whereas in multicellular T. socialis and G. pectorale, DRP1 signals were observed in all division planes during embryogenesis. Conclusions: These results indicate that the molecular mechanisms of cytokinesis may be different in unicellular and multicellular volvocine algae. The localization of DRP1 during multiple fission might have been modified in the common ancestor of multicellular volvocine algae. This modification may have been essential for the re-orientation of cells and shaping colonies during the emergence of multicellularity in this lineage.

Keywords

Multicellularity, Volvocine algae, Tetrabaena socialis, DRP1

External links

About this resource

  • Canonical resource URI: http://purl.org/phylo/treebase/phylows/study/TB2:S21468
  • Other versions: Download Reconstructed NEXUS File Nexus Download NeXML File NeXML
  • Show BibTeX reference
  • Show RIS reference