CiteULike CiteULike
Delicious Delicious
Connotea Connotea

Citation for Study 15306

About Citation title: "Evolutionary insights about bacterial GlxRS from whole genome analyses: Is GluRS2 a chimera?".
About Study name: "Evolutionary insights about bacterial GlxRS from whole genome analyses: Is GluRS2 a chimera?".
About This study is part of submission 15306 (Status: Published).

Citation

Dasgupta S., & Basu G. 2014. Evolutionary insights about bacterial GlxRS from whole genome analyses: Is GluRS2 a chimera?. BMC Evolutionary Biology, 14: 26.

Authors

  • Dasgupta S. Phone +919831317552
  • Basu G. (submitter) Phone +919231874575

Abstract

Background: Evolutionary histories of glutamyl-tRNA synthetase (GluRS) and glutaminyl-tRNA synthetase (GlnRS) in bacteria are convoluted. After the divergence of eubacteria and eukarya, bacterial GluRS glutamylated both tRNAGln and tRNAGlu until GlnRS appeared by horizontal gene transfer (HGT) from eukaryotes or a duplicate copy of GluRS (GluRS2) that only glutamylates tRNAGln appeared. The current understanding is based on limited sequence data and not always compatible with available experimental results. In particular, the origin of GluRS2 is poorly understood. Results: A large database of bacterial GluRS, GlnRS, tRNAGln and the trimeric aminoacyl-tRNA-dependent amidotransferase (gatCAB), constructed from whole genomes by functionally annotating and classifying these enzymes according to their mutual presence and absence in the genome, was analyzed. Phylogenetic analyses showed that the catalytic and the anticodon-binding domains of functional GluRS2 (as in Helicobacter pylori) were independently acquired from evolutionarily distant hosts by HGT. Non-functional GluRS2 (as in Thermotoga maritima), on the other hand, was found to contain an anticodon-binding domain appended to a gene-duplicated catalytic domain. Several genomes were found to possess both GluRS2 and GlnRS, even though they share the common function of aminoacylating tRNAGln. GlnRS was widely distributed among bacterial phyla and although phylogenetic analyses confirmed the origin of most bacterial GlnRS to be through a single HGT from eukarya, many GlnRS sequences also appeared with evolutionarily distant phyla in phylogenetic tree. A GlnRS pseudogene could be identified in Sorangium cellulosum. 2 Conclusions: Our analysis broadens the current understanding of bacterial GlxRS evolution and highlights the idiosyncratic evolution of GluRS2. Specifically we show: i) GluRS2 is a chimera of mismatching catalytic and anticodon-binding domains, ii) the appearance of GlnRS and GluRS2 in bacterial genomes are not mutually exclusive indicating that their evolutionary histories are distinct, iii) GlnRS is more widespread in bacteria than is believed, iv) bacterial GlnRS appeared both by HGT from eukarya and intra-bacterial HGT, v) presence of GlnRS pseudogene shows that many bacteria could not retain the newly acquired eukaryal GlnRS. The functional annotation of GluRS, without recourse to experiments, performed in this work, demonstrates the inherent and unique advantages of using whole genome over isolated sequence databases.

Keywords

GluRS, GluRS2, GlnRS, HGT, tRNAGln, gene duplication, phylum-specificity, whole-genome analysis

External links

About this resource

  • Canonical resource URI: http://purl.org/phylo/treebase/phylows/study/TB2:S15306
  • Other versions: Download Reconstructed NEXUS File Nexus Download NeXML File NeXML
  • Show BibTeX reference
  • Show RIS reference