@ARTICLE{TreeBASE2Ref27741,
author = {Mar?a Cecilia Opazo and Rodrigo Javier Lizana and Yazmina Stappung and Thomas M Davis and Raul S Herrera and Mar?a Alejandra Moya},
title = {XTHs from Fragaria vesca: genomic structure and transcriptomic analysis in ripening fruit and other tissues​},
year = {2017},
keywords = {Fragaria vesca, XTH},
doi = {},
url = {http://},
pmid = {},
journal = {BMC Genomics},
volume = {},
number = {},
pages = {},
abstract = {Background: Fragaria vesca or ?woodland strawberry? has emerged as an attractive model for the study of ripening of non-climacteric fruit. It has several advantages, such as its small genome and its diploidy. The recent availability of the complete sequence of its genome opens the possibility for further analysis and its use as a reference species. Fruit softening is a physiological event and involves many biochemical changes that take place at the final stages of fruit development; among them, the remodeling of cell walls by the action of a set of enzymes. Xyloglucan endotransglycosylase/hydrolase (XTH) is a cell wall-associated enzyme, which is encoded by a multigene family. Its action modifies the structure of xyloglucans, a diverse group of polysaccharides that crosslink with cellulose microfibrills, affecting therefore the functional structure of the cell wall. The aim of this work is to identify the XTH-encoding genes present in F. vesca and to determine its transcription level in ripening fruit.
Results: The search resulted in identification of 26 XTH-encoding genes named as FvXTHs. Genetic structure and phylogenetic analyses were performed allowing the classification of FvXTH genes into three phylogenetic groups: 17 in group I/II, 2 in group IIIA and 4 in group IIIB. Two sequences were included into the ancestral group. Through a comparative analysis, characteristic structural protein domains were found in FvXTH protein sequences. In complement, expression analyses of FvXTHs by qPCR were performed in fruit at different developmental and ripening stages, as well as, in other tissues. The results showed a diverse expression pattern of FvXTHs in several tissues, although most of them are highly expressed in roots. Their expression patterns are not related to their respective phylogenetic groups. In addition, most FvXTHs are expressed in ripe fruit, and interestingly, some of them (FvXTH 18 and 20, belonging to phylogenic group I/II, and FvXTH 25 and 26 to group IIIB) display an increasing expression pattern as the fruit ripens.
Conclusion: A discrete group of FvXTHs (18, 20, 25 and 26) increases their expression during softening of F. vesca fruit, and could take part in cell wall remodeling required for softening in collaboration with other cell wall degrading enzymes.​}
}
Citation for Study 21730

Citation title:
"XTHs from Fragaria vesca: genomic structure and transcriptomic analysis in ripening fruit and other tissues".

Study name:
"XTHs from Fragaria vesca: genomic structure and transcriptomic analysis in ripening fruit and other tissues".

This study is part of submission 21730
(Status: Published).
Citation
Opazo M., Lizana R.J., Stappung Y., Davis T.M., Herrera R.S., & Moya M. 2017. XTHs from Fragaria vesca: genomic structure and transcriptomic analysis in ripening fruit and other tissues​. BMC Genomics, .
Authors
-
Opazo M.
-
Lizana R.J.
-
Stappung Y.
(submitter)
+56977067077
-
Davis T.M.
-
Herrera R.S.
-
Moya M.
Abstract
Background: Fragaria vesca or ?woodland strawberry? has emerged as an attractive model for the study of ripening of non-climacteric fruit. It has several advantages, such as its small genome and its diploidy. The recent availability of the complete sequence of its genome opens the possibility for further analysis and its use as a reference species. Fruit softening is a physiological event and involves many biochemical changes that take place at the final stages of fruit development; among them, the remodeling of cell walls by the action of a set of enzymes. Xyloglucan endotransglycosylase/hydrolase (XTH) is a cell wall-associated enzyme, which is encoded by a multigene family. Its action modifies the structure of xyloglucans, a diverse group of polysaccharides that crosslink with cellulose microfibrills, affecting therefore the functional structure of the cell wall. The aim of this work is to identify the XTH-encoding genes present in F. vesca and to determine its transcription level in ripening fruit.
Results: The search resulted in identification of 26 XTH-encoding genes named as FvXTHs. Genetic structure and phylogenetic analyses were performed allowing the classification of FvXTH genes into three phylogenetic groups: 17 in group I/II, 2 in group IIIA and 4 in group IIIB. Two sequences were included into the ancestral group. Through a comparative analysis, characteristic structural protein domains were found in FvXTH protein sequences. In complement, expression analyses of FvXTHs by qPCR were performed in fruit at different developmental and ripening stages, as well as, in other tissues. The results showed a diverse expression pattern of FvXTHs in several tissues, although most of them are highly expressed in roots. Their expression patterns are not related to their respective phylogenetic groups. In addition, most FvXTHs are expressed in ripe fruit, and interestingly, some of them (FvXTH 18 and 20, belonging to phylogenic group I/II, and FvXTH 25 and 26 to group IIIB) display an increasing expression pattern as the fruit ripens.
Conclusion: A discrete group of FvXTHs (18, 20, 25 and 26) increases their expression during softening of F. vesca fruit, and could take part in cell wall remodeling required for softening in collaboration with other cell wall degrading enzymes.​
Keywords
Fragaria vesca, XTH
External links
About this resource
- Canonical resource URI:
http://purl.org/phylo/treebase/phylows/study/TB2:S21730
- Other versions:
Nexus
NeXML
- Show BibTeX reference
@ARTICLE{TreeBASE2Ref27741,
author = {Mar?a Cecilia Opazo and Rodrigo Javier Lizana and Yazmina Stappung and Thomas M Davis and Raul S Herrera and Mar?a Alejandra Moya},
title = {XTHs from Fragaria vesca: genomic structure and transcriptomic analysis in ripening fruit and other tissues​},
year = {2017},
keywords = {Fragaria vesca, XTH},
doi = {},
url = {http://},
pmid = {},
journal = {BMC Genomics},
volume = {},
number = {},
pages = {},
abstract = {Background: Fragaria vesca or ?woodland strawberry? has emerged as an attractive model for the study of ripening of non-climacteric fruit. It has several advantages, such as its small genome and its diploidy. The recent availability of the complete sequence of its genome opens the possibility for further analysis and its use as a reference species. Fruit softening is a physiological event and involves many biochemical changes that take place at the final stages of fruit development; among them, the remodeling of cell walls by the action of a set of enzymes. Xyloglucan endotransglycosylase/hydrolase (XTH) is a cell wall-associated enzyme, which is encoded by a multigene family. Its action modifies the structure of xyloglucans, a diverse group of polysaccharides that crosslink with cellulose microfibrills, affecting therefore the functional structure of the cell wall. The aim of this work is to identify the XTH-encoding genes present in F. vesca and to determine its transcription level in ripening fruit.
Results: The search resulted in identification of 26 XTH-encoding genes named as FvXTHs. Genetic structure and phylogenetic analyses were performed allowing the classification of FvXTH genes into three phylogenetic groups: 17 in group I/II, 2 in group IIIA and 4 in group IIIB. Two sequences were included into the ancestral group. Through a comparative analysis, characteristic structural protein domains were found in FvXTH protein sequences. In complement, expression analyses of FvXTHs by qPCR were performed in fruit at different developmental and ripening stages, as well as, in other tissues. The results showed a diverse expression pattern of FvXTHs in several tissues, although most of them are highly expressed in roots. Their expression patterns are not related to their respective phylogenetic groups. In addition, most FvXTHs are expressed in ripe fruit, and interestingly, some of them (FvXTH 18 and 20, belonging to phylogenic group I/II, and FvXTH 25 and 26 to group IIIB) display an increasing expression pattern as the fruit ripens.
Conclusion: A discrete group of FvXTHs (18, 20, 25 and 26) increases their expression during softening of F. vesca fruit, and could take part in cell wall remodeling required for softening in collaboration with other cell wall degrading enzymes.​}
}
- Show RIS reference
TY - JOUR
ID - 27741
AU - Opazo,Mar?a Cecilia
AU - Lizana,Rodrigo Javier
AU - Stappung,Yazmina
AU - Davis,Thomas M
AU - Herrera,Raul S
AU - Moya,Mar?a Alejandra
T1 - XTHs from Fragaria vesca: genomic structure and transcriptomic analysis in ripening fruit and other tissues​
PY - 2017
KW - Fragaria vesca
KW - XTH
UR - http://dx.doi.org/
N2 - Background: Fragaria vesca or ?woodland strawberry? has emerged as an attractive model for the study of ripening of non-climacteric fruit. It has several advantages, such as its small genome and its diploidy. The recent availability of the complete sequence of its genome opens the possibility for further analysis and its use as a reference species. Fruit softening is a physiological event and involves many biochemical changes that take place at the final stages of fruit development; among them, the remodeling of cell walls by the action of a set of enzymes. Xyloglucan endotransglycosylase/hydrolase (XTH) is a cell wall-associated enzyme, which is encoded by a multigene family. Its action modifies the structure of xyloglucans, a diverse group of polysaccharides that crosslink with cellulose microfibrills, affecting therefore the functional structure of the cell wall. The aim of this work is to identify the XTH-encoding genes present in F. vesca and to determine its transcription level in ripening fruit.
Results: The search resulted in identification of 26 XTH-encoding genes named as FvXTHs. Genetic structure and phylogenetic analyses were performed allowing the classification of FvXTH genes into three phylogenetic groups: 17 in group I/II, 2 in group IIIA and 4 in group IIIB. Two sequences were included into the ancestral group. Through a comparative analysis, characteristic structural protein domains were found in FvXTH protein sequences. In complement, expression analyses of FvXTHs by qPCR were performed in fruit at different developmental and ripening stages, as well as, in other tissues. The results showed a diverse expression pattern of FvXTHs in several tissues, although most of them are highly expressed in roots. Their expression patterns are not related to their respective phylogenetic groups. In addition, most FvXTHs are expressed in ripe fruit, and interestingly, some of them (FvXTH 18 and 20, belonging to phylogenic group I/II, and FvXTH 25 and 26 to group IIIB) display an increasing expression pattern as the fruit ripens.
Conclusion: A discrete group of FvXTHs (18, 20, 25 and 26) increases their expression during softening of F. vesca fruit, and could take part in cell wall remodeling required for softening in collaboration with other cell wall degrading enzymes.​
L3 -
JF - BMC Genomics
VL -
IS -
ER -